Orce and Lucena (Spain)
2009 SEQS Annual Congress
September 28th - October 3rd
The Quaternary of southern Spain: a bridge between Africa and the Alpine domain
The Quaternary of southern Spain: a bridge between Africa and the Alpine domain

September 28th - October 3rd, 2009
Orce and Lucena, Spain

2009 annual meeting SEQS

ABSTRACT VOLUME
and
FIELDTRIPS GUIDE

Edited by:
Bienvenido Martínez-Navarro
Isidro Toro Moyano
Paul Palmqvist
Jordi Agustí
ORGANIZING COMMITTEE

ORGANIZER OF THE SEQS MEETING
Dr. Bienvenido Martínez-Navarro

SECRETARY
Dr. Florent Rivals
Dr. Beatriz Fajardo
Ms. Mª Patrocinio Espigares
Mr. Sergio Ros-Montoya

SCIENTIFIC COMMITTEE

Prof. Mauro Coltorti
Università di Siena, Italy, President of the SEQS

Prof. Teresa Bajardí
Universidad de Alcalá de Henares, Spain, President of the AEQUA

Prof. Caridad Zazo
MNCN, Madrid, Spain, President of the Spanish Committee of INQUA

Dr. Guzel Danukalova
Institute of Geology USC Russian Academy of Sciences, Ufa, Russia

Dr. Wim Westerhoff
TNO-Geological Survey of the Netherlands, Utrecht, The Netherlands

Prof. Philip Gibbard
Cambridge University of Cambridge, United Kingdom

Prof. Eric Delson
CUNY & American Museum of Natural History, New York, USA

Prof. Thijs van Kolfschoten
University of Leiden, The Netherlands

Dr. Jean-Philippe Brugal
CNRS, Université Aix en Provence, France

Prof. Maria Rita Palombo
University of Rome “La Sapienza”, Rome, Italy

Prof. Lorenzo Rook
University of Florence, Italy

Prof. Gloria Cuenca-Bescós
Universidad de Zaragoza Pedro Cerbuna, Zaragoza, Spain

Prof. Alfredo Pérez González
CENIEH, Burgos, Spain
Prof. Robert Sala
Universitat Rovira i Virgili, IPHES, Tarragona, Spain

Dr. Isidro Toro
Museo Arqueológico y Etnológico de Granada, Spain

Dr. Jordi Agustí
ICREA, IPHES, Universitat Rovira i Virgili, Tarragona, Spain

Prof. Paul Palmqvist
Universidad de Málaga, Spain

Prof. Oriol Oms
Universidad Autónoma de Barcelona, Spain

Prof. Maite Alberdi
Museo Nacional de Ciencias Naturales, Madrid, Spain

Dr. Enrique Baquedano
Museo Arqueológico Regional de la Comunidad de Madrid

Dr. Alfonso Arribas
Museo GeoMinero, IGME, Madrid, Spain

Prof. César Visceras
Universidad de Granada, Spain

Prof. Elvira Martín-Suárez
Universidad de Granada, Spain

Dr. Cecilio Barroso
Cueva del Ángel and Zafarraya Project, Málaga, Spain

Dr. José Antonio Riquelme
Universidad de Granada, Spain

Prof. Juan Antonio Pérez-Claros
Universidad de Málaga, Spain

Dr. Francisco Giles
Museo del Puerto de Santa María, Spain

Prof. Miquel de Renzi
Universidad de Valencia, Spain

INSTITUTIONS SUPPORTING THE CONFERENCE
INQUA-SEQS
Consejería de Cultura, Junta de Andalucía
Diputación de Granada
Ayuntamiento de Orce
Delegación de Patrimonio Histórico, Ayuntamiento de Lucena
Ayuntamiento de Padul
Institut Català de Paleoecología Humana i Evolució Social (IPHES)
Asociación Bética de Paleoecología Humana
BIOSTRATINOMY APPLIED TO THE INTERPRETATION OF THE SCAVENGER ACTIVITY IN PALEOECSYSTEMS

Eloísa BERNÁLDEZ SÁNCHEZ, Laboratorio de Paleobiologia. Instituto Andaluz del Patrimonio Histórico. Consejería de Cultura de la Junta de Andalucía

There is not scientific guarantee that vertebrate remains preserved in archaeological and paleontological sites can be a significant sample of the paleocommunity to which they belonged, or were part of human consumption. Also, we do not know the qualitative and quantitative consequences of pre-depositional processes of trophic activity of human population and of any other scavengers. As a result, we performed a biostratinomic study of the carcass association scattered throughout Doñana Biological Reserve (DBR) to know if there are general patterns that can be applied to the taphonomic study of archaeological sites.

It has been designed a general methodology of study -inferred from the biostratinomic study of macromammals inhabiting in Doñana Biological Reserve (DBR) (Huelva, SW Spain)- which allows to compare pre-depositional characteristics of any anthropological or natural tanathocenosis and taphocenosis. We have observed the accumulation per surface unit and the individual conservation in order to characterize bone deposits and to quantify the loss or gain of biological information from it.

Doñana Biological Reserve has four well-differentiated ecosystems: shrublands (the so-named Monte), sand dunes, marshlands and the so-called Vera (this is the ecotone between marshlands and shrublands, where the highest faunistic and floristic richness is found). There are 208 bird species, 32 of mammals, 22 of reptiles, 10 of amphibia, and 8 of fish in Doñana, but, in the studied tanathocenosis between 1989 and 1991:
- Only 13 vertebrate species have been found (5% of Doñana species). Then, the terrestrial vertebrate community from DBR is not represented in the tanathocenosis.
- Mammal community is best represented by species with weight greater or equal to 1 kg. Specifically, 6 species of ungulate are present (all with more than 50 kg), 2 carnivorous and 1 lagomorph (European rabbit, with less than 3 kg). All these remains represent a 29% of mammal community in Doñana, while birds and reptiles are represented by 1% and 9% respectively. We did not find remains of small mammals with the methodology of direct observation for sampling.
- The Doñana tanathocenosis is similar to that observed by Behrensmeier and Boaz (1980) in Amboseli National Park (Kenia). But, with the differences observed between these two natural reserves, we could identify a greater or lesser intensity of the activity of scavengers and carnivores that were part of the community (permanently or seasonally, E.g. scavenging birds). In both ecosystems, Doñana and Amboseli, carcass accumulation follows similar patterns:
 a) All the species whose individuals have more than 50 kg are represented in the tanathocenosis.
 b) Seasonality and occasionality of some behavioural events (such as ungulate rutting -ronca and berrrea- in red deers and fallow deers), epizootics events (plague during 1988 in wild boars) and climatic events (flooding, sand dunes movements, drought), cause a higher mortality rate in mammal populations (which is registered in the frequency of carcasses and bone remains). E.g. in Vera and Monte we found 59 carcasses (45.8% from total) and the maximum accumulation of the year (1988-1989) was in November (27 carcasses). 21 of these carcasses were of recently dead animals.
c) The age structure of the mammal community is not represented in the tanathocenosis: young individuals remains appear in low frequency. The higher frequency observed of located young carcasses is in ungulates between October and November, disappearing from the surface in a few months.

d) The distribution of carcasses in the different biotopes is an indicator of habitat preference by species and the abundance of carnivores and scavengers in the area (16 individuals/km² in Vera; 5.5 individuals/km² in Monte; 8.3 individuals/km² in marshlands and 16.7 individuals/km² in sand dunes).

e) Carcases density was 10.8 vertebrate individuals/km² (the total number of carcasses was 150), with weights range between 80 g to more than 400 Kg. The 95% of this sample were ungulates (9.5 cadavers/km²).

f) In Doñana the majority of ungulate carcasses were found under cork oaks of Monte and Vera, which were surrounded by patches of ferns and blackberries over 1 m. In Amboseli, the higher frequency of ungulate carcasses was found in marshlands, areas with vegetation cover less than 50 cm. We deduce that in Amboseli the most carcasses were predation products. In Doñana, however, the distribution of the carcasses response to disease deaths (animals in search of shelter and water).

g) We have confirmed that the aggregation index $F = s^2/x$ (a ratio between variance and mean) of the carcasses of each biotope is higher than 1, which indicates that the probability of finding a carcass is greater where there is another. The largest number of red deer carcasses was found in leafy areas of Monte (the preferred habitat for this species). Cows, as well as fallow deers, wild boars, mongooses, foxes and rabbits, also select specific locations to die (all in biotopes of Vera).

All these results have shown that paleobiological interpretations need biostratimomical studies to interpret the past, and the present work has presented the analyses of an organic deposit in a determined natural ecosystem. It remains to be known the differences with other ecosystems located in different latitudes to define a general model to explain the formation of bone deposits.

![Figure 1: Number of species of the community and of the tanathocenosis in Doñana National Park.](image)